HOPPE

Sailing smoothly

Navigating a migration from multi-repo to monorepo

Hamburg Python Pizza
17.11.2023
Julio Batista Silva

-~ Hoppe Marine

Ha mbufg

We develop fluid control and measurement systems for the maritime industry

=57 [itomromermon Approximately one of every eight
S5] Maiak Pertormance e - E new ships is equipped with at
(mmira) Monitoring System ~4%| Electronic
e | least one of our systems*®

8000+
vessels

,,,m\!,lﬁi Flume® Stabilization
(rwre] System

Maihak Shaft Power &

mnad Performance Meter <7) Valve Remote Control <4« Draught Measuring

They generate a lot of data!

HOPPE Hamburg Python Pizza 17.11.2023

APIls and Pipelines

.
—
This data must be
ﬁl“ﬂ?ﬁ: - u r
Cleaned . ’”“*ﬁ?\ Bg
\/a | |d ated T \5‘ Data Inspector
Aggregated

Displayed on our web interface
Made available to customers

Transformations and analysis are done with Pandas, scikit-learn, etc. m
o] Each in its own repo...
APIs are built with FastAPI and deployed as AWS Lambda functions

HOPPE Hamburg Python Pizza 17.11.2023

Where things got hard

Having separated repos made sense in the beginning but the codebase grew
As of 3 months ago, our 4-people team alone was responsible for 56 repos &

APIls and pipelines are independent, but have common (internal and external) dependencies
Things got hard Dependency hell
Hard to test
Hard to keep everything updated
Hard to keep consistency
Hard to synchronize dependencies

HOPPE Hamburg Python Pizza 17.11.2023

Example:
Change a function in one shared library

Clone the repository where the function is defined

Create a virtual environment

Change the function

Run tests

Open a PR

Publish a new version of the library to our package repository
Find, in all repositories, where this function is used

Clone those repositories

Create a virtual environment for each

Update the dependency

Change the function call there (if required) .

Run tests Bad not just because
Open a PR it's a lot of work

Repeat recursively

HOPPE Hamburg Python Pizza 17.11.2023

Solution

Feature freeze. Time for refactoring
Before migrating to the monorepo:

Monorepo
We wrote more tests
“A single repository from Defined a well-organized repo structure
which multiple packages Defined code standards and tooling
are published”
Poetry for dependency management
@ Monorepo # Monolith Ruff for sorting imports, formatting and linting
Pytest for unit tests
4 N N 7@) Docker for reproducibility
Pre-commit hooks
ackKage
Faciege & _ Opted for trunk-based development
dcrage (With short-lived branches)
- y € /X 4
Monolith Multi-repo Monorepo

HOPPE Hamburg Python Pizza 17.11.2023

What about deployment?

This is the biggest challenge, in my opinion
The old CI/CD pipelines ran all tests and deployed everything in the repo

How to test and deploy only what is affected by your changes?
Custom scripts that parse git diff-tree i
Cl tool specific configuration l’

There are better tools!

(But they are not always trivial to setup @ @9 @)

HOPPE Hamburg Python Pizza

17.11.2023

7/

Tooling

¥ Bazel N.x\

ﬁ Gradle

Lerna

TURBOREPO)

HOPPE

Hamburg Python Pizza

17.11.2023

8

Pants 2

Feature rich build system
Developed with Python use cases in mind (iso supports Go, Java, Scala, Kotlin, Shell, Docker, and more)
Infers a lot about your repo via static analysis
Fast
Caching (also remote)
Concurrency
Extendable

Works with goals. You write what you want to achieve,
and Pants orchestrates the execution for you

pants test apis/api_1
pants package pipelines/pipeline_2/**
pants lint fmt --changed-since=HEAD

Fetch result
y from Cache
Process Result

%
Store result
Run process —

Process request

result

Output files
stdout
stderr

Input files
Environment

Into cache

eeeeeeeeeeeeeeeeeeeee 7

HOPPE Hamburg Python Pizza 17.11.2023

Pros and Cons

Monorepo Multi-repo / Polyrepo
Pros Pros
> Single environment » Simpler to develop if components are independent
> Visibility > Simpler CD pipeline
; LEjglsfich;t‘zlest changes in shared libraries R alerio grantine gralicmece. Sy
> Nolleadifora prialcie TSy s oo > Norisk of triggering a large ClI build for small changes
» Atomic PRs = Easier code review
» Common version of dependencies
Cons Cons
> Requires degﬂicated tooling to be practical > Harder to keep track of changes across repositories
> Largerepository B » Prone to inconsistencies between repos
> PRsaccumulate (and you get notified a lot* 1) > Harder to debug and test while refactoring
» Large commit history *
» Git history is lost during migration _
* There are tools to deal with that
HOPPE Hamburg Python Pizza 17.11.2023 10

Lessons Learned and Hints

Monorepos are not a silver bullet

They bring benefits, but also can also create new problems. Weight the pros and cons carefully
Migrating many repositories can be a lot of work

Dedicated tools exist, but they are not always trivial to setup and there will be a learning curve to use
Pants can be adopted incrementally

You can have a hybrid-repo. Not all the codebase has to be migrated

Organization is key

You should still avoid tight coupling between components

For AWS Lambdas, shared dependencies can be deployed as lambda layers

HOPPE Hamburg Python Pizza 17.11.2023 11

References

https://www.hoppe-marine.com
https://www.marinelink.com/news/solutions-shipping414299
https://monorepo.tools
https://sdtimes.com/softwaredev/the-monorepo-approach-to-code-management
https://www.tweag.io/blog/2023-04-04-python-monorepo-1/
https://www.pantsbuild.org/

"Hermetic Environments in Pantsbuild” aka "Fast and Reproducible Tests, Packaging, and Deploys
with Pantsbuild” by Chris Neugebauer at Pycon 2022

"Python monorepos: what, why and how" by Benjy Weinberger at EuroPython 2021

HOPPE Hamburg Python Pizza 17.11.2023 12

Thank You

HOPPE Hamburg Python Pizza 17.11.2023 13

	Slide 1: Sailing smoothly Navigating a migration from multi-repo to monorepo
	Slide 2: Hoppe Marine
	Slide 3: APIs and Pipelines
	Slide 4: Where things got hard
	Slide 5: Example: Change a function in one shared library
	Slide 6: Solution
	Slide 7: What about deployment?
	Slide 8: Tooling
	Slide 9: Pants 2
	Slide 10: Pros and Cons
	Slide 11: Lessons Learned and Hints
	Slide 12: References
	Slide 13

