
Sailing smoothly
Navigating a migration from multi-repo to monorepo

Hamburg Python Pizza
17.11.2023

Julio Batista Silva

Hoppe Marine

We develop fluid control and measurement systems for the maritime industry

17.11.2023Hamburg Python Pizza 2

Approximately one of every eight
new ships is equipped with at
least one of our systems

They generate a lot of data!

8000+
vessels

[2]

APIs and Pipelines

• This data must be

• Cleaned

• Validated

• Aggregated

• Displayed on our web interface

• Made available to customers

• Transformations and analysis are done with Pandas, scikit-learn, etc.

• APIs are built with FastAPI and deployed as AWS Lambda functions

17.11.2023Hamburg Python Pizza 3

Each in its own repo…

Where things got hard

• Having separated repos made sense in the beginning but the codebase grew

• As of 3 months ago, our 4-people team alone was responsible for 56 repos 🤯

• APIs and pipelines are independent, but have common (internal and external) dependencies

• Things got hard

• Hard to test

• Hard to keep everything updated

• Hard to keep consistency

• Hard to synchronize dependencies

17.11.2023Hamburg Python Pizza 4

A

B

C>=1.5C==1.0

Dependency hell

Example:
Change a function in one shared library

1. Clone the repository where the function is defined

2. Create a virtual environment

3. Change the function

4. Run tests

5. Open a PR

6. Publish a new version of the library to our package repository

7. Find, in all repositories, where this function is used

8. Clone those repositories

9. Create a virtual environment for each

10. Update the dependency

11. Change the function call there (if required)

12. Run tests

13. Open a PR

14. Repeat recursively

17.11.2023Hamburg Python Pizza 5

Bad not just because
it’s a lot of work

Solution

Before migrating to the monorepo:

• We wrote more tests

• Defined a well-organized repo structure

• Defined code standards and tooling

• Poetry for dependency management

• Ruff for sorting imports, formatting and linting

• Pytest for unit tests

• Docker for reproducibility

• Pre-commit hooks

• Opted for trunk-based development
(With short-lived branches)

17.11.2023Hamburg Python Pizza 6

Monorepo

“A single repository from
which multiple packages
are published”

✋Monorepo ≠ Monolith

Feature freeze. Time for refactoring

Package A

Monolith

Package A

Package B

Package C

Multi-repo

Package A

Package B

Package C

Monorepo

What about deployment?

• This is the biggest challenge, in my opinion

• The old CI/CD pipelines ran all tests and deployed everything in the repo

• How to test and deploy only what is affected by your changes?

• Custom scripts that parse git diff-tree

• CI tool specific configuration

• There are better tools! 😀😀😀
(But they are not always trivial to setup 😭😭😭)

17.11.2023Hamburg Python Pizza 7

Tooling

17.11.2023Hamburg Python Pizza 8

Pants 2

• Feature rich build system

• Developed with Python use cases in mind (also supports Go, Java, Scala, Kotlin, Shell, Docker, and more)

• Infers a lot about your repo via static analysis

• Fast

• Caching (also remote)

• Concurrency

• Extendable

• Works with goals. You write what you want to achieve,
and Pants orchestrates the execution for you

pants test apis/api_1

pants package pipelines/pipeline_2/**

pants lint fmt --changed-since=HEAD

17.11.2023Hamburg Python Pizza 9

Source: Chris Neugebauer [7]

Pros and Cons

Monorepo

Pros
➢ Single environment
➢ Visibility
➢ Uniformity
➢ Easier to test changes in shared libraries
➢ No need for a private Python package repository
➢ Atomic PRs ⇒ Easier code review
➢ Common version of dependencies

Multi-repo / Polyrepo

Pros
➢ Simpler to develop if components are independent
➢ Simpler CD pipeline
➢ Easier to grant fine-grained access*
➢ No risk of triggering a large CI build for small changes

17.11.2023Hamburg Python Pizza 10

Cons
➢ Requires dedicated tooling to be practical
➢ Large repository
➢ PRs accumulate (and you get notified a lot* 🔔)
➢ Large commit history *
➢ Git history is lost during migration

Cons
➢ Harder to keep track of changes across repositories
➢ Prone to inconsistencies between repos
➢ Harder to debug and test while refactoring

* There are tools to deal with that

Lessons Learned and Hints

• Monorepos are not a silver bullet

• They bring benefits, but also can also create new problems. Weight the pros and cons carefully

• Migrating many repositories can be a lot of work

• Dedicated tools exist, but they are not always trivial to setup and there will be a learning curve to use

• Pants can be adopted incrementally

• You can have a hybrid-repo. Not all the codebase has to be migrated

• Organization is key

• You should still avoid tight coupling between components

• For AWS Lambdas, shared dependencies can be deployed as lambda layers

17.11.2023Hamburg Python Pizza 11

References

1. https://www.hoppe-marine.com

2. https://www.marinelink.com/news/solutions-shipping414299

3. https://monorepo.tools

4. https://sdtimes.com/softwaredev/the-monorepo-approach-to-code-management

5. https://www.tweag.io/blog/2023-04-04-python-monorepo-1/

6. https://www.pantsbuild.org/

7. "Hermetic Environments in Pantsbuild" aka "Fast and Reproducible Tests, Packaging, and Deploys
with Pantsbuild“ by Chris Neugebauer at Pycon 2022

8. "Python monorepos: what, why and how“ by Benjy Weinberger at EuroPython 2021

17.11.2023Hamburg Python Pizza 12

17.11.2023Hamburg Python Pizza 13

Thank You

	Slide 1: Sailing smoothly Navigating a migration from multi-repo to monorepo
	Slide 2: Hoppe Marine
	Slide 3: APIs and Pipelines
	Slide 4: Where things got hard
	Slide 5: Example: Change a function in one shared library
	Slide 6: Solution
	Slide 7: What about deployment?
	Slide 8: Tooling
	Slide 9: Pants 2
	Slide 10: Pros and Cons
	Slide 11: Lessons Learned and Hints
	Slide 12: References
	Slide 13

